17 double s= mumsRecoMass2()/(
GeV*
GeV);
20 complex<double> den = M() * M() -
s 21 - g_1_square(
s) * (
s - sA() * _m_pi * _m_pi)/(M() * M() - sA() * _m_pi * _m_pi)*z(
s)- complex<double>(0,1) * M() * Gamma_tot(
s);
27 return g_1_square(
s)/M() * (
s -sA()*_m_pi*_m_pi)/(M()*M() -sA()*_m_pi*_m_pi)*rho_2(
s,_m_pi).real();
31 return M()*(b1()+b2()*
s)*exp(-(
s-M()*M())/A());
36 double rho_pipi = rho_2(
s,_m_pi).real();
37 double returnVal = 2.;
38 if(rho_pipi>0.)returnVal += rho_pipi * log((1.-rho_pipi)/(1.+rho_pipi));
40 return returnVal/TMath::Pi();
44 return j1(
s)-j1(M()*M());
49 return g_KK()*g_1_square(
s)*
s/(M()*M()*M())*exp(-alpha()*sqrt((
s-4.*_m_K*_m_K)*(
s-4.*_m_K*_m_K))) * rho_2(
s,_m_K);
53 return g_etaeta() *g_1_square(
s)*
s/(M()*M()*M())*exp(-alpha()*sqrt((
s-4.*_m_eta*_m_eta)*(
s-4.*_m_eta*_m_eta))) * rho_2(
s,_m_eta);
57 if(
s < 16. * _m_pi*_m_pi)
return 0;
58 return g_4pi() * rho_4(
s)/rho_4(M()*M());
62 double rho_squared = 1.- 4. *
m*
m /
s;
63 if(rho_squared >= 0)
return sqrt(rho_squared);
64 else return complex<double>(0,1)*sqrt(-rho_squared);
68 return 1./(1.+exp(
lambda()*(s0()-
s)));
double Gamma_4pi(double s)
std::complex< double > Gamma_2K(double s)
std::complex< double > rho_2(double s, double m)
std::complex< double > Gamma_2eta(double s)
virtual std::complex< double > BreitWigner()
double Gamma_2pi(double s)
double lambda(double x, double y, double z)
double g_1_square(double s)