#include <MintFcnGrad.h>
|
virtual double | Up () const |
|
Definition at line 10 of file MintFcnGrad.h.
◆ MintFcnGrad()
MINT::MintFcnGrad::MintFcnGrad |
( |
IMinimisable * |
theFunction | ) |
|
|
inline |
Constructor
Definition at line 16 of file MintFcnGrad.h.
IMinimisable * _theFunction
◆ Gradient()
virtual std::vector<double> MINT::MintFcnGrad::Gradient |
( |
const std::vector< double > & |
par | ) |
const |
|
inlinevirtual |
User-supplied gradient
Definition at line 40 of file MintFcnGrad.h.
virtual void Gradient(std::vector< double > &grad)
IMinimisable * _theFunction
◆ operator()()
virtual double MINT::MintFcnGrad::operator() |
( |
const std::vector< double > & |
par | ) |
const |
|
inlinevirtual |
Calculate test-statistic from Minuit2 fit parameter guesses
Definition at line 23 of file MintFcnGrad.h.
25 for(
unsigned int i=0; i<par.size(); ++i )
31 std::cout << std::setprecision(std::numeric_limits<double>::digits10);
32 std::cout <<
"-2logL = " << negll << std::endl;
IMinuitParameter * getParPtr(unsigned int i)
virtual double getVal()=0
virtual MinuitParameterSet * getParSet()=0
virtual void parametersChanged()=0
IMinimisable * _theFunction
virtual void setCurrentFitVal(double pval)=0
◆ SetBestMin()
void MINT::MintFcnGrad::SetBestMin |
( |
const double & |
best_min | ) |
|
|
inline |
If minimisation fails due to edm being above tolerance, set the best known -2logL and reminimise
Definition at line 48 of file MintFcnGrad.h.
◆ Up()
virtual double MINT::MintFcnGrad::Up |
( |
| ) |
const |
|
inlineprivatevirtual |
Change in test-statistic that defines the uncertainty of fit parameters
Definition at line 55 of file MintFcnGrad.h.
◆ _best_min
double MINT::MintFcnGrad::_best_min = 0.0 |
|
private |
◆ _error_def
const double MINT::MintFcnGrad::_error_def = 1.0 |
|
private |
◆ _theFunction
The documentation for this class was generated from the following file: